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Abstract

The lineshapes of two-dimensional magnetic resonance spectra of disordered or partially ordered solids are dominated by ridges of
singularities in the frequency plane. The positions of these ridges are described by a branch of mathematics known as catastrophe theory
concerning the mapping of one 2D surface onto another. We systematically consider the characteristics of HYSCORE spectra for para-
magnetic centers having electron spin S = 1/2 and nuclear spin I = 1 in terms of singularities using an exact solution of the nuclear spin
Hamiltonian. The lineshape characteristics are considered for several general cases: zero nuclear quadrupole coupling; isotropic hyperfine
but arbitrary nuclear quadrupole couplings; coincident principal axes for the nuclear hyperfine and quadrupole tensors; and the general
case of arbitrary nuclear quadrupole and hyperfine tensors. The patterns of singularities in the HYSCORE spectra are described for each
case.
� 2005 Elsevier Inc. All rights reserved.

Keywords: ESE EM; HYSCORE; 2D spectroscopy; Catastrophe theory; Nitrogen nucleus; Hyperfine interaction; Singularity patterns; Mapping;
Quadrupolar interaction; Fold; Cusp
1. Introduction

Techniques to allow observation of multidimensional
spectra are widely applied in magnetic resonance spectros-
copy for better resolution and easier interpretation of
experimental data [1,2]. Two-dimensional (2D) displays
of spectra are used extensively because they are readily
visualized. In both electron paramagnetic resonance and
nuclear magnetic resonance (EPR and NMR) spectrosco-
pies, 2D spectra are obtained as slices or projections of
higher dimensional spectra or by applying some pulse
sequence to the system in question where two time inter-
vals, t1 and t2, in the pulse sequence are varied indepen-
dently, see Fig. 1. The system response (typically spin
echo or free induction signal) is stored as a 2D array of
data. After 2D Fourier transformation, one obtains the
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2D spectral density of the signal in the x1, x2 plane, where
the frequency, xj, is the Fourier conjugate of tj. In solid
state measurements, such spectra often have complicated
lineshapes because of anisotropic interactions that cause
molecules with different orientations to have different spec-
tral frequencies. If the molecules in the sample have com-
plete or partial orientational disorder, (often referred to
as �powder� samples), the detailed lineshapes offer an
opportunity to determine the complete, anisotropic mag-
netic resonance parameters of the molecule (see, e.g. [3,4]).

In 2D Fourier magnetic resonance experiments, the
time-domain signal produced by molecules at any single,
arbitrary orientation may be presented as

V ðt1; t2Þ ¼
XN

j;k¼1

Aj;k expðiXjt1 þ iXkt2Þ; ð1Þ

where the frequencies Xj depend on the spin Hamiltonian
eigenvalues and in simple cases are the transition frequen-
cies of the system. The amplitudes, Aj,k, depend on the

mailto:maryasov@ns.kinetics.nsc.ru


A

B

Fig. 1. Pulse sequences used in two-dimensional spectroscopy, (A) the
general scheme, and (B) HYSCORE experiment implementation. In the
latter case the stimulated echo signal amplitude is measured. It is
generated by the first, second and the fourth pulses. The signal amplitude
is measured as a function of two delays, t1 and t2, between the mixing
(third) pulse and second and fourth pulses, respectively. The rotation
angles are shown above the pulses.
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characteristics of the microwave (mw) pulses in the case of
EPR or radiofrequency (rf) pulses in the case of NMR, the
particular pulse sequence, and on the parameters of the
spin Hamiltonian. Both Xj and Aj,k implicitly depend on
the orientation of the molecule in the magnetic field of
the spectrometer because the spin Hamiltonian generally
is orientation dependent. In this paper, we use a type of
2D EPR spectroscopy known as HYSCORE [7] as a specif-
ic example, although the approach is applicable to other
types of 2D EPR [8–10] or NMR methods. For simplicity,
we do not consider relaxation in Eq. (1) and assume both
frequencies to be non-zero. In general, the signal described
by Eq. (1) consists of damped periodic oscillations in the
time domain. We ignore the damping here because it is usu-
ally negligible compared to damping caused by interference
from the distribution of frequencies in a �powder� sample.

Fourier transformation of Eq. (1) gives

V Fðx1;x2Þ ¼
XN

j;k¼1

Aj;kdðx1 � XjÞdðx2 � XkÞ; ð2Þ

where d (x) is Dirac�s delta-function. Instead of a smooth
function of two variables in the time domain, the trans-
formed signal is a set of discrete points in the frequency do-
main having infinite amplitude and zero spectral density in
the rest of the frequency plane. For an orientationally dis-
ordered or �powder� sample, Eqs. (1) and (2) must be inte-
grated over the orientations of the molecules in the sample
with respect to the laboratory frame. Such integration leads
to a set of regions or spectral �lines� having non-zero spec-
tral density, which may partly overlap each other. The
boundaries between regions with zero and non-zero spec-
tral density often form rather prominent ridges. Such 2D
patterns of ridges allow precise determination of the spin
Hamiltonian parameters from which valid inferences of
the molecular or electronic structure can be made and is
the motivation for the use of �contour lineshapes� devel-
oped by Dikanov [5]. In favorable cases, spin Hamiltonian
parameters are determined completely by the positions of
the ridges without the need to consider the intensity factors
in Eqs. (1) and (2). This paper systematically examines the
shapes of these ridges and the question of whether promi-
nent ridges lie only on the boundaries between regions with
and without spectral density.

From the point of view of mathematics, each term in Eq.
(2) represents a smooth mapping of the hemisphere of pos-
sible orientations onto the frequency plane

x1 ¼ Xjðh;/Þ
x2 ¼ Xkðh;/Þ

�
. ð3Þ

Here h and / are the polar and azimuthal angles relating
the external magnetic field to the molecular frame. Because
inversion of the magnetic field does not change the eigen-
values of the spin-Hamiltonian, only a hemisphere of pos-
sible orientations need be considered. We will make
extensive use of the unit hemisphere defined by h and /
in discussing the orientation dependence of the spectral fre-
quencies in the 2D spectra. This smooth mapping generates
singularities where many orientations of a paramagnetic
center (PC) result in the same set of frequencies so that sig-
nificant areas of the hemisphere map to a single, intense
point in the frequency plane.

These singularities produce a 2D �powder� spectrum with
prominent features where the signal intensity approaches
infinity in the ideal case. The branch of mathematics which
concerns singularities in the smooth mappings of one met-
ric space onto the other is called catastrophe theory [6]. We
used catastrophe theory to predict and understand features
in HYSCORE spectra for different classes of spin Hamilto-
nians but for this paper we try to explain those results with
more familiar mathematics. Other approaches have been
used with great success (see the excellent discussion of 2D
NMR powder lineshapes in [4]).

In HYSCORE spectra, the singularities are modified by
the intensity factor, Aj,k. The intensity factor is strictly
bounded, generally, 0 6 |Aj,k|2 61. These intensity factors
may cause part of a singularity to have zero amplitude,
but they can never produce a singularity independent of
the mapping. Thus, the prominent features in a spectrum
correspond to singularities whose locations can be deter-
mined without calculating the Aj,k although not every sin-
gularity will have sufficient intensity to be observed.

This paper considers 2D spectroscopy in �powder� sam-
ples in the context of catastrophe theory and focuses on
the features of the spectrum that arise from singularities
produced by the mapping because in many cases the loca-
tions of these singularities are sufficient to determine the
desired spin Hamiltonian parameters. A form of 2D pulsed
EPR spectroscopy, known as hyperfine sublevel correlation
(HYSCORE) spectroscopy [7], of PCs having electron spin
S = 1/2 and nuclear spin I = 1 is used as a specific spectro-
scopic example. HYSCORE uses the electron spin for the
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indirect detection of nuclear spin coherences generated in
nuclei with an appreciable hyperfine coupling to the PC.

Our analysis is based on exact solutions of the complete
nuclear spin Hamiltonians. Although the discussion is in
the context of HYSCORE spectroscopy, it is directly rele-
vant to other forms of pulsed EPR spectroscopy, for exam-
ple, 2D TRIPLE [8,9], 2D ENDOR ESEEM correlation
spectroscopy [8] or double nuclear coherence transfer
(DONUT)-HYSCORE spectroscopy [10]. Catastrophe the-
ory has been used in the theory of nonlinear resonances in
molecular spectroscopy (see, e.g. [11]) and in ferromagnetic
resonance spectra [12].

The origin of the nuclear quantum beats in pulsed EPR
experiments such as HYSCORE will be outlined first, fol-
lowed by a few important results from catastrophe theory
relevant to this paper. Then the 2D �powder� lineshapes
in HYSCORE spectra will be considered for several general
classes of spin Hamiltonians. Although numerical simula-
tions of HYSCORE spectra have been made for specific
sets of spin Hamiltonian parameters and analytical results
obtained for the simpler cases, this is the first systematic
investigation of the locations of the singularities and the
methods to rapidly calculate their locations.

2. Electron spin echo envelope modulation and HYSCORE

spectra

The effect of electron spin echo (ESE) envelope modula-
tion (EM) [13,14] was discovered about four decades ago
and is a periodic oscillation in the electron spin echo signal
amplitude as the time interval between microwave pulses is
varied. Electron spin flips produced by nonselective mw
pulses change the local magnetic field produced by the
hyperfine interaction (hfi) at a nearby nucleus. These
instantaneous changes in local field generate interfering
nuclear coherences or, in other words, quantum beats in
the nuclear subsystem. These quantum beats give rise in
ESE experiments to an amplitude modulation of the echo
known as EM.

Let us consider the EM in detail using a vector model we
originally defined for the case of S = 1/2, I = 1/2 and
which we now extend to S = 1/2, I = 1. The system Ham-
iltonian (in units of angular frequency) consists of three
terms

Ĥ ¼ ĤS þ ~̂S A
$
~̂I þ Ĥ I ; ð4Þ

where the first and the third terms depend on the electron
and nuclear spin operators, respectively, and the second
term describes the electron—nuclear hfi with A

$
being the

tensor of this interaction. In the case of (effective) electron
spin, S = 1/2, HS reduces to the electron Zeeman interac-
tion. In many cases, the quantization axis for the electron
spin coincides with the direction of the external magnetic
field~kz (this direction is chosen as the z axis of the labora-
tory frame) with high accuracy so the first and the second
terms in the Hamiltonian (4) may be written in the form
ĤS þ ~̂S A
$
~̂I � xSŜz þ Ŝzð~A �~̂IÞ ð5Þ

for the typical �high field� limit in which jĤS j � j~̂S A
$
~̂I j; jĤ I j.

Here the vector~A is proportional to the hyperfine field pro-
duced at the nucleus by the electron spin

~A ¼~kz A
$

. ð6Þ
The approximation (5) allows factorization of the system
eigenfunctions as a product of wavefunctions, jwi ¼
jmSijwI;mS

i, where the second term in the product is the
eigenfunction of the nuclear subhamiltonian, Ĥ I;mS , corre-
sponding to a manifold of states with mS being the projec-
tion of the electron spin onto its quantization axis, in our
case mS = ±1/2. This operator may be written as

Ĥ I ;mS ¼ mS
~A �~̂I þ Ĥ I ¼ xI Î z þ mS

~A �~̂I þ~̂I Q
$
~̂I . ð7Þ

Here xI is the nuclear Zeeman frequency and Q
$

is the
nuclear quadrupolar interaction tensor. Electron spin flips
induced by mw pulses change the value of mS in Eq. (7) and
can project eigenstates of Ĥ I;1=2, for example, into a coher-
ent superposition of eigenstates of Ĥ I;�1=2, giving rise to the
quantum beats.

For spin I = 1, the Hamiltonian (7) was solved in a ser-
ies of papers by Muha [15] in trigonometric form. The
eigenvalues may be written as

XmS ;j ¼
4jpmS

j
3

� �1=2

cos
kmS þ 2pj

3

� �
ð8Þ

for j = 0,1,2 and

cos kmS ¼
qmS

2

3

jpmS
j

� �3=2

; ð9Þ

where (see also our earlier paper [16])

pmS
¼ � D2

mS
þ j2ð3þ g2Þ

h i
; ð10Þ

qmS
¼ ~DmS Q

$
~DmS � 2j3ð1� g2Þ. ð11Þ

Here ~DmS is the effective field (in units of an angular fre-
quency) affecting the nuclear spin, given by the vector
sum of the external magnetic field and the hyperfine field

~DmS ¼ xI
~kz þ mS

~A ð12Þ
and DmS is its length. The nuclear quadrupole interaction
tensor is often written as

Q
$
¼
�ð1� gÞj 0 0

0 �ð1þ gÞj 0

0 0 2j

2
64

3
75 ð13Þ

in the frame of its principal axes, here j is the quadrupolar
coupling constant, and g is the asymmetry parameter.

The four pulse sequence producing the HYSCORE
spectra is shown in Fig. 1B. The measured signal is the
stimulated echo amplitude generated by the 1st, 2nd, and
4th pulses as a function of the two delays t1 (between the
2nd and the 3rd inverting pulse) and t2 (between the 3rd
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and the 4th pulses) as shown in the figure. In this case, the
2D spectral density given by Eq. (2) for a PC having a par-
ticular orientation may be written as

V Fðx1;x2Þ ¼
X
n;j;r;s

dðx1 � Xj;n
a Þdðx2 � Xr;s

b ÞAnjrsðh;/Þ

þ
X
n;j;r;s

dðx1 � Xj;n
b Þ

� dðx2 � Xr;s
a ÞBnjrsðh;/Þ; ð14Þ

where the transition frequencies of the nuclear subhamilto-
nians are [15,16]

Xj;k
mS
¼ XmS ;j � XmS ;k ¼ 2jpmS

j1=2sgn½k � j�nmS ;jþk ð15Þ

with

nmS ;n ¼ sin
kmS þ pn

3

� �
ð16Þ

being a dimensionless factor, a and b are used here and be-
low instead of mS = +1/2 and mS = �1/2, respectively, for
better readability. The number n (n = 1,2,3) in Eq. (16)
indexes the three possible transitions in the spectrum of
the nucleus [15,16]. The largest transition frequency occurs
for n = 1 and is often called the double quantum (dq) tran-
sition while the n = 2 and 3 transitions are called single
quantum (sq) transitions. The amplitudes A and B may
be calculated in the framework of the standard description
of HYSCORE [2,5] using the Mims matrices [17], M,
whose elements are scalar products of nuclear eigenfunc-
tions belonging to different electron spin manifolds, or
using the spectral decomposition of subhamiltonians from
Eq. (7) as developed in [16]. In the latter case, only the
eigenvalues are needed for the calculations. In this paper,
the explicit forms of the amplitudes are of no importance,
only the fact that their magnitude is less than unity.

Each product of delta-functions in Eq. (14) maps the
hemisphere of orientations onto the frequency plane. Each
product correlates transition frequencies from two different
electron spin manifolds, providing an opportunity to
extract the parameters of the nuclear subhamiltonians.
There are 72 terms in Eq. (14) for I = 1 that map onto 72
distinct but often overlapping regions of the entire frequen-
cy plane. Each term maps the unit hemisphere into a single,
continuous region whose outline is a singularity. Because
of the symmetry of the HYSCORE spectra [2] usually only
the x2 P 0 half-plane with 36 ridges is displayed.

Let us consider one term from Eq. (14), for example, the
one with the coefficient Anjrs. The appropriate mapping will
be:

x1 ¼ Xj;n
a ðh;/Þ;

x2 ¼ Xr;s
b ðh;/Þ.

ð17Þ

The singularities produced by this mapping provide the
region with fine structure consisting of one or a few ridges
where the spectral density goes to infinity. Any ridge may
cross itself or another ridge from the same or a different
region. In Section 4, we consider in detail the patterns that
these ridges form for several general types of nuclear spin
Hamiltonians.

3. Relevant results from catastrophe theory

Eq. (17) describes a smooth mapping (since x1 and x2

are functions of h and /) R2) R2, where Ri is an i-dimen-
sional metric space. All possible singularities resulting from
such a mapping in the general case were described in the
paper by Whitney half-a-century ago [18]. The theory of
singularities of smooth mappings of multidimensional
spaces forms a part of catastrophe theory together with
the theories of caustics of wave fronts and bifurcations of
solutions of ordinary nonlinear differential equations [6],
where similar objects appear.

For us, the most important result is the discovery by Whit-
ney [18] that, in the general case, only two types of singular-
ities exist. Whitney called these folds and cusps, see Fig. 2 for
examples. An example of a fold is the projection of a sphere
onto a plane. Each point on the plane near the fold singular-
ity corresponds to zero or two points on the surface of the
sphere. The case of a cusp is less simple; it may be described
as the junction of two annihilating folds. Near a cusp, each
point on most of the plane corresponds to only one point
of the projected surface while inside a narrow angle each
point on the plane corresponds to three points on the project-
ed surface with fold singularities meeting at a cusp separating
these regions of the plane. More complex singularities are
special cases that may be reduced to a set of folds and cusps
by arbitrarily small distortions of the projected surface
bringing it into a condition known as a ‘‘general position.’’
The singularity that forms the outline of a spectral region
cannot contain a cusp because there must be at least one
point of the surface on either side of a cusp while no point
on the unit hemisphere can be projected outside the spectral
region. This means that any cusps that exist must lie in the
interior of the HYSCORE line.

The singularities in the mapping (17) obey a simple
equation obtained from catastrophe theory or the calculus
of coordinate transformations [4]. That is, the Jacobian, J,
of the mapping vanishes on these lines

J ¼
o Xj;n

a ðh;/Þ;X
r;s
b ðh;/Þ

� �
oðh;/Þ

¼ oXj;n
a

oh

oXr;s
b

o/
� oXj;n

a

o/

oXr;s
b

oh
¼ 0. ð18Þ

Relation (18) may be rewritten in an equivalent and rather
compact form, as discovered in 2D NMR spectroscopy [3]

~rXj;n
a � ~rXr;s

b ¼ 0. ð19Þ

Here Hamilton�s nabla operator, ~r, is used for the gradient
calculations.

Each transition frequency in Eq. (19) depends on pmS

and qmS
from Eqs. (10) and (11), respectively, so that one

can rewrite the Jacobian (18) as
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Fig. 2. The two general types of singularities in a smooth mapping R2) R2 according to Whitney, (A) a fold which occurs along the circle formed when a
sphere is projected onto a plane, and (B) a cusp located at the apex of the triangular figure on the plane. The vertical lines illustrate that (A) points on the
plane on opposite sides of the fold correspond to two points of the sphere (the left line crosses the sphere two times) or no points of the sphere (the right
line does not cross the sphere); and (B) the number of points projected onto the plane is 3 inside the cusp (the left line crosses the surface three times) and
just one outside it (the right line crosses the surface at one point).
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J ¼ oXa

opa

oXb

opb

oðpa; pbÞ
oðh;/Þ þ

oXa

opa

oXb

oqb

oðpa; qbÞ
oðh;/Þ þ

oXa

oqa

� oXb

opb

oðqa; pbÞ
oðh;/Þ þ

oXa

oqa

oXb

oqb

oðqa; qbÞ
oðh;/Þ . ð20Þ

Here the upper indices are omitted for simplicity. The par-
tial derivatives of the transition frequencies in the above
equation may be calculated easily using Eq. (15):

oXj;k
mS

opmS

¼
Xj;k

mS

2pmS

þ 2sgn½k � j�jpmS
j1=2 onmS ;jþk

opmS

; ð21Þ

oXj;k
mS

oqmS

¼ 2sgn½k � j�jpmS
j1=2 onmS ;jþk

oqmS

. ð22Þ

With the help of Eq. (16) one can obtain

onmS ;n

oumS

¼ 1

3
cos

kmS þ pn
3

� �
okmS

oumS

; ð23Þ

where u represents p and q as needed. The derivatives of k
may be calculated using its definition in Eq. (9):

okmS

opmS

¼ 3 cos kmS

2pmS
sin kmS

; ð24Þ

okmS

oqmS

¼ � cos kmS

qmS
sin kmS

. ð25Þ

Taking account of Eqs. (8) and (23)–(25) one can rewrite
Eqs. (21) and (22) as:

oXj;k
mS

opmS

¼
Xj;k

mS

2pmS

þ
ffiffiffi
3
p

sgn½k � j� cos kmS

4 cos pðk�jÞ
3

h i
sin kmS

XmS ;j þ XmS ;k

pmS

; ð26Þ

oXj;k
mS

oqmS

¼ � sgn½k � j� cos kmS

2
ffiffiffi
3
p

cos pðk�jÞ
3

h i
sin kmS

XmS ;j þ XmS ;k

qmS

. ð27Þ
It is clear that the location of the singularities in the fre-
quency plane can be found by classic mathematical analysis
without recourse to catastrophe theory. However, catastro-
phe theory does allow us to recognize and categorize the
types of singularities that do occur. In addition, the ridges
of singularities in a spectrum can be quickly visualized with
minimal computational effort using another branch of
catastrophe theory: the caustics of wave fronts or singular-
ities of the system of rays. When wave fronts, for instance,
those of light, propagate through inhomogeneous media,
these waves may have high relative amplitude in places be-
cause of constructive interference of these waves. That is, at
singularities of the wave fronts. Wave front propagation
can also be posed in terms of the propagation of rays which
are normal to the surface of the wave front. Such a system
of rays also may have caustics (singularities) where they are
focused by the medium.

On the unit hemisphere, the parallels or lines of latitude
start from the pole and expand in a set of concentric circles
out to the equator while the meridians or lines of longitude
radiate out from the poles, and are everywhere perpendic-
ular to the parallels. These parallels and meridians behave
like wavefronts and rays, respectively. The mapping of the
unit hemisphere onto the frequency plane by Eq. (17)
behaves like the propagation of rays and wavefronts
through anisotropic media. The singularities of the map-
ping occur where rays or wavefronts pile up on top of each
other. The prominent singularities in a HYSCORE line-
shape can be quickly identified with little computational
effort by seeing where the parallels and meridians pile up
when they are mapped onto the frequency plane as illus-
trated later.

Many of our conclusions are based on the mapping of a
closed surface onto the frequency plane. Yet the unit hemi-
sphere is not a closed surface and might be expected to
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Fig. 3. The topology of the hemisphere due to the symmetry with respect to the inversion. The hemisphere with arbitrary chosen pole (A), the hemisphere
smoothed out on a plane (B), once (C), and twice (D) folded. After the latter procedure the edges should be glued, the first with the third, and the second
with the forth, joining the points where the eigenfrequencies of the nuclear Hamiltonian are the same.
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have an open �edge� or boundary. But for magnetic reso-
nance, the unit hemisphere has no bounds from the point
of view of topology because of the inversion symmetry of
the spin Hamiltonian. The eigenvalues are invariant with
respect to inversion of the external magnetic field
~kz ) �~kz, producing an interesting topological property.
The equator of any arbitrary hemisphere is mapped onto
the frequency plane twice because the frequencies of oppo-
site points on the sphere coincide. This means that, one can
think of the opposite points on the equator as �glued�
together, see Fig. 3, to make the unit hemisphere behave
in the context of mapping as if it had no edges. The fre-
quencies change smoothly as one jumps to the opposite
point at the equator. Let us underline that the final step
after the twofold folding in Fig. 3D is to glue the layers
in pairs: the first (counting from top to bottom) with the
third, the second with the fourth, this stage is not shown
in the figure. Such a glued hemisphere will have self-cross-
ing surfaces. This feature results in rather complex singu-
larity patterns in the general case of the nuclear
subhamiltonian having no symmetry and will be illustrated
later.

4. HYSCORE spectra in several important cases

We now consider a few general cases of HYSCORE
spectra with electron spin S = 1/2 and nuclear spin I = 1.
We discuss some particular cases where special sets of
Hamiltonian parameters are imposed by molecular or crys-
tal symmetry. In the most general case, the nuclear sub-
hamiltonian involves nine independent parameters: the
nuclear Zeeman frequency, xI; the three principal values
of the anisotropic hyperfine tensor, AU,U (here U denotes
the principal axis direction, U = X,Y,Z); the nuclear
quadrupolar interaction characterized by its strength j
and asymmetry g; and the three Eulerian angles relating
the orientation of the principal axes of NQI tensor to the
hfi tensor. This number may by reduced to 8 if the frequen-
cy parameters are scaled, e.g., by the nuclear Zeeman fre-
quency. We will comment in Section 5 on the effect of g-
factor anisotropy. However, molecular or crystal symmetry
may reduce the number of parameters still further, for
instance, by making the hyperfine interaction isotropic or
the nuclear quadrupole interaction axial.

Catastrophe theory usually deals with the systems of
‘‘general position’’ as explained above. The ‘‘general posi-
tion’’ situation means that the values of all parameters
are not in some way ‘‘special,’’ e.g., degeneracy in the ener-
gy levels is not allowed. However, in this section we shall
consider cases when the nuclear subhamiltonian has non-
accidental degeneracies or symmetry so the ‘‘general posi-
tion’’ condition is not met. In such cases, we will not break
the degeneracy or symmetry as usually done in applications
of Catastrophe Theory by an arbitrarily small adjustment
to the nuclear spin Hamiltonian. Rather, Catastrophe The-
ory guides us in reducing the angular space that we map so
that the degeneracy is removed and we are in a ‘‘general
position.’’ For example we might map a single octant with
a specially chosen orientation instead of mapping the entire
hemisphere with an arbitrarily chosen pole and be confi-
dent that we have not missed any spectral features.

4.1. Absence of NQI

When the quadrupolar interaction is absent, the three
eigenvalues of the nuclear subhamiltonian in each electron
spin manifold become equidistant. Due to the coincidence
of two transition frequencies the total number of unique
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ridges is 16 (in the upper half of the frequency plane)
instead of 36 in the general case. The form of the ridges
resembles that for nuclear spin I = 1/2 discussed in [5].
Here we consider the specific details for spin I = 1, giving
the Catastrophe Theory results a more conventional
explanation.

4.1.1. General case of an anisotropic hyperfine interaction

When the NQI is negligible, the eigenvalues of the nucle-
ar subhamiltonians and respective transition frequencies
are easily calculated and the mapping (17) of the singular-
ities onto the frequency plane is simple. The nuclear transi-
tion frequencies in this case are calculated from a simplified
Eq. (15)

Xj;k
mS
¼ cj;kDmS ; ð28Þ

where cj,k is a constant

cj;k ¼ 2sgnðk � jÞ sin
p
6
½1þ 2ðjþ kÞ�

n o
ð29Þ

and DmS , Eq. (12), is the strength (in units of angular fre-
quency) of the effective magnetic field affecting the nucleus
in the mS electron spin manifold,

D2
mS
¼ x2

I þ
1

4
~kzA
$T

A
$
~kz þ mSxI

~kzðA
$
þA
$T

Þ~kz. ð30Þ

Here the superscript T denotes the transpose of a matrix. It
is clear that |cj,k| = 2 for double quantum (dq) nuclear tran-
sitions (when j + k = 1) or 1 for the single quantum (sq)
transitions (when j + k > 1). In the principal axis system
of the hfi tensor Eq. (30) may be presented as

D2
mS
¼ D2

mS ;X
sin2hcos2/þ D2

mS ;Y
sin2hsin2/

þ D2
mS ;Z

cos2h. ð31Þ

Here DmS ;U is the length of the vector ~DmS when the external
magnetic field is directed along U-th principal axis of the
hfi tensor (U = X,Y,Z)

D2
mS ;U
¼ x2

I þ
1

4
A2

U ;U þ 2mSxI AU ;U ð32Þ

with AU,U being a principal value of the hfi tensor. First we
consider the case when all these values are different. Axial
symmetry of the hfi tensor is considered below as a special
case.

In the absence of NQI, additional symmetry features
appear in the mapping (17). The substitutions /
) 2p � / and /) p ± / (in the system of hfi tensor) lead
to the same transition frequencies (28). It means that the
hemisphere is mapped four times onto the same ridges in
the frequency plane and that the mappings of its four
octants coincide. In this case the hemisphere (for the sake
of discussion, the upper one, where cosh P 0) is folded in
half twice, causing pairs of folds to coincide. Such degener-
acy violates the ‘‘general position’’ situation considered by
catastrophe theory. To resolve this situation, we cut one
octant out of the whole sphere first along the edges / = 0
and / = p/2, and then along the equator where h = p/2
(see Fig. 3, giving one of the four layers in D). The �edges�
map onto the frequency plane as a set of fold singularities.
These folds may also be obtained as formal solutions of
Eq. (18) or the more complex relation, Eq. (20). Eq. (18)
takes a simple form that will be seen later

J / Wðh;/Þ ¼ cos hsin3h cos / sin / ¼ 0; ð33Þ
which gives the same folds obtained from our consider-
ation of the symmetry of the transition frequencies.

The mappings of the folds—the two meridians / = 0, /
= p/2 and the equator h = p/2—form the boundaries of the
HYSCORE line in the frequency plane, which is the map-
ping of the spherical triangle. The shape of the HYSCORE
line is a curvilinear triangle and it is possible to find analyt-
ical relations for its boundaries in the frequency plane. The
ridges are simple triangles when considered in terms of
squares of the two frequencies, ðx2

1;x
2
2Þ, called the x2-plane

for simplicity. For the fold along the equator, cosh = 0, so
that one obtains a parametric form for Eq. (17):

x2
1 ¼ c2

j;n D2
a;X þ ðD2

a;Y � D2
a;X Þsin2/

h i
;

x2
2 ¼ c2

r;s D2
b;X þ ðD2

b;Y � D2
b;X Þsin2/

h i
;

ð34Þ

which is a straight line segment on the x2-plane connecting
the points ðc2

j;nD2
a;X ; c

2
r;sD

2
b;X Þ and ðc2

j;nD2
a;Y ; c

2
r;sD

2
b;Y Þ. The two

other folds also map as straight line segments which con-
nect these two points with the map of the pole at
ðc2

j;nD2
a;Z ; c

2
r;sD

2
b;ZÞ. Examples of ridges in the absence of

NQI are displayed in Fig. 4. The standard frequency plane
and the x2-plane are shown. The only singularities are the
folds which outline each of the HYSCORE lines.

The signal intensity is exactly zero when the external
magnetic field lies along a principal axis of the hyperfine
tensor. This condition occurs at the vertices of each ridge
in the HYSCORE spectrum for this nuclear spin Hamilto-
nian. Thus, the singularities can be prominent on the sides
of each HYSCORE line, but must vanish at the vertices.
However, the vertices can be easily located by a simple lin-
ear extrapolation of the singularity edges in the x2-plane
[5]. The vertices give the frequencies of the principal values
of the hfi and therefore completely describe the hfi and the
nuclear spin subhamiltonians.

Both single quantum transition frequencies are the same
for this nuclear spin Hamiltonian which imparts a charac-
teristic feature to the HYSCORE spectrum that has some
utility in the analysis of spectra. The sq–dq and dq–sq ridg-
es have the same form of the sq–sq ridges but are expanded
by a factor of two in one dimension, and the dq–dq ridges
are expanded in both dimensions. If point (x1,x2) is
observed on a sq-sq singularity on the frequency plane,
the following points also lie on singularities and have non-
zero spectral density: sq–dq—(x1,2x2), dq–sq—(2x1,x2),
dq–dq—(2x1,2x2), and due to the symmetry features of
the HYSCORE spectra, (x2,x1), (x2,2x1), (2x2,x1),
(2x2,2x1). In addition, all the HYSCORE lineshapes are
simple triangles in the x2-plane.



Fig. 4. The singularities of the HYSCORE spectrum in the absences of NQI (A) on the frequency plane, the types of correlation are indicated for each
HYSCORE line; and (B) on the x2-plane. Parameters of the nuclear subhamiltonian were as follows: xI = 1, AX,X = 1.8, AY,Y = 0.5, and AZ,Z = 1.5.
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These results systematically extend our earlier results [5]
from I = 1/2 to arbitrary I in the absence of NQI. We note
here that Eq. (28) is quite general for all I when j = 0, with
cj,k taking integer values from 1 to 2I, so that all
HYSCORE lines, whether involving single or multiple
quanta, have the same shape properties as for I = 1 and
that the only singularities are the folds outlining each
HYSCORE line.

4.1.2. Axial symmetry of the hyperfine interaction

The case of axial symmetry of the hfi tensor introduces
additional degeneracies because two principal values of this
tensor coincide. This leads to significant simplification of
Eq. (31)

D2
mS
¼ D2

mS ;kcos2hþ D2
mS ;?sin2h; ð35Þ

where DmS ;k and DmS ;? are just redefinitions of the quantities
given in Eq. (32).

In this situation, the transition frequencies are indepen-
dent of the azimuth angle /, so that the Jacobian (18) van-
ishes on the whole sphere

J axialðj ¼ 0Þ � 0. ð36Þ
This means that all HYSCORE lines have zero width, and
the triangles in the x2-plane collapse to straight line seg-
ments because two vertexes of triangle coincide (the equa-
tor is mapped onto a single point in this case). ‘‘General
position’’ is met by every chord connecting the pole and
the equator. The ridges become curvilinear segments in
the standard frequency plane with delta function cross sec-
tions and straight line segments in the x2-plane which com-
pletely describe the hfi [5]. These results hold for all values
of I P 1 and for crosspeaks of all possible quantum orders.

4.2. Arbitrary NQI

Addition of a quadrupole interaction removes the
degeneracy of the single quantum transition frequencies
for nuclear subhamiltonians except in a few very special sit-
uations described below. There are potentially 36 ridges in
the frequency plane, but some of these ridges may overlap.
We do not consider the case of an axially symmetric quad-
rupolar interaction separately because it is obtained natu-
rally for g ¼ 0.

4.2.1. Isotropic hyperfine interaction
Systems having arbitrary NQI and isotropic hyperfine

interaction were considered earlier in detail [16]. It was
shown that the HYSCORE lines have zero width,
because the effective field affecting the nuclear spin, Eq.
(12), is directed along the external magnetic field for
both electron spin manifolds. In such a situation, the
parameters pmS

(see Eq. (10)) are independent of the
PC orientation and the parameters qmS

depend on the
same function of orientation, f (g,h,/), [15,16] for both
manifolds. The immediate consequence is that the Jaco-
bian (18) vanishes

J isoðj 6¼ 0Þ � 0. ð37Þ

There is no simple way to transform the curvilinear zero
width ridges into straight line segments (as could be done
in the absence of NQI) or even into simple polynomial or
trigonometric functions.

4.2.2. Coincident principal axes for NQI and hfi

When the NQI and hfi principal axes coincide, the quan-
tities pmS

and qmS
in Eqs. (10) and (11) may be arranged in

the form of Eq. (31), for example:

qmS
¼ qmS ;X sin2hcos2/þ qmS ;Y sin2hsin2/þ qmS ;Zcos2h;

pmS
¼ pmS ;X sin2hcos2/þ pmS ;Y sin2hsin2/þ pmS ;Zcos2h;

ð38Þ

where h and / define the direction of the external magnetic
field in the principal axis system of both tensors, and
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qmS ;U ¼ QU ;U x2
I þ

1

4
A2

U ;U þ 2mSxIAU ;U

� 

� 2j3ð1� g2Þ;

pmS ;U ¼ � x2
I þ

1

4
A2

U ;U þ 2mSxI AU ;U þ j2ð3þ g2Þ
� �

.

ð39Þ
Here QU,U are the principal values of the NQI tensor
(U = X,Y,Z) given in Eq. (13).

The nuclear transition frequencies in this case depend on
the orientation of the external magnetic field in a rather
complex manner, yet they possess the same symmetry fea-
tures as described above in the absence of NQI. This means
that the mappings of the four octants of the hemisphere
onto the frequency plane coincide, that ‘‘general position’’
can be achieved by the same reduction of the unit hemi-
sphere to an octant, and that Eq. (33) is still valid for the
singularities of the mapping.

However, additional singularities are now possible.
Eq. (20) can be factored so that the four components
of the Jacobian may be calculated as the product of
two terms:

J ¼ 4Wðh;/Þ � oXa

opa

oXb

opb

pa;Y pb;Z � pa;Zpb;Y þ pa;Zpb;X

�"

�pa;X pb;Z þ pa;X pb;Y � pa;Y pb;X

�
þ oXa

oqa

oXb

opb

�fqa;Y pb;Z � qa;Zpb;Y þ qa;Zpb;X � qa;X pb;Z

þqa;X pb;Y � qa;Y pb;X

�
þ oXa

opa

oXb

oqb

pa;Y qb;Z � pa;Zqb;Y

�
þpa;Zqb;X � pa;X qb;Z þ pa;X qb;Y � pa;Y qb;X

�
þ oXa

oqa

oXb

oqb

qa;Y qb;Z � qa;Zqb;Y þ qa;Zqb;X � qa;X qb;Z

�
þqa;X qb;Y � qa;Y qb;X

�#
. ð40Þ

Singularities arise in the mapping (17) if either term in the
product vanishes. The first term on the right hand side is
W (h,/) from Eq. (33), and results from the symmetry pro-
duced by coincident principal axes. The second factor, in
square brackets, may be rewritten in compact form asX
u;u0¼p;q

oXa

oua

oXb

ou0b
ð~a � ð~ua �~u0bÞÞ ¼ 0. ð41Þ

Here, the auxiliary vectors, ~pmS
¼ ðpmS ;X ; pmS ;Y ; pmS ;ZÞ,

~qmS
¼ ðqmS ;X ; qmS ;Y ; qmS ;ZÞ, and ~a ¼ ð1; 1; 1Þ, are introduced.

Unfortunately, there seems to be no simple way to solve
Eq. (41) except numerically.

Fig. 5 displays some examples of the singularities of the
dq,dq HYSCORE line in a frequency spectrum (right-hand
side where the singularities appear as folds or turning
points of the projected surfaces in the frequency plane)
and the respective lines where J = 0 on a �flattened� unit
hemisphere (left-hand side) for different values of the quad-
rupole coupling constant. These two displays are comple-
mentary with the frequency display showing the
frequencies of the singularities, but not the corresponding
orientations; while the hemisphere display shows the orien-
tations where the singularities occur but not their frequen-
cies. The parameters were chosen to show a range of
features in the patterns.

The singularities are shown as solid lines in both types of
displays. The patterns look like projections of curvilinear
triangles whose edges are defined by W (h,/) = 0 in Eq.
(33). These �triangles� may appear twisted and possess addi-
tional singularities if additional folds appear from Eq. (41).
These additional singularities are better resolved on the
surface of the hemisphere than on the frequency plane.
There are two types, the first looks like a bubble connected
to one edge of the octant (Fig. 5D) while the second con-
nects two different sides of the octant (cases B, E, and F).
These additional folds are too close to the folds from Eq.
(33) to be resolved in the frequency plane.

The HYSCORE line in Fig. 5C has a heel-like pattern
on the lower, right-hand side which becomes a narrow
spike in Fig. 5D when the bubble at the equator of the
hemisphere appears. The width of the spike approaches
zero as the bubble approaches the meridian with coordi-
nates h = / = p/2 (where it is highly degenerate, and is
not shown in Fig. 5 because it is not a �general position�).
When j exceeds some critical value (	0.61 for the cur-
rent parameters), the pattern becomes like that in
Fig. 5E and looks like a twisted triangle in the frequency
plane.

Fig. 6 illustrates other features of additional folds in the
frequency plane. In Fig. 6A the distance between the addi-
tional fold (the mapping of a curvilinear segment near the
pole from the left part of Fig. 5B) and the mappings of
both meridians, / = 0 and / = p/2, are displayed. The
mappings of the meridians cross each other. The triangle
at the right part of Fig. 5B is twisted near its leftmost ver-
tex. The distance does not exceed 10�3 xI and will produce
an intense and likely unresolvable peak. Fig. 6B shows the
additional fold in Fig. 5D and the main fold, which is a
mapping of the equator. The distance between these fea-
tures is less than 10�4 xI, meaning that the entire surface
area of the bubble on the left-hand side of Fig. 5D is
mapped onto a very narrow strip in the frequency plane,
producing an unresolved region of high spectral density.

In the frequency plane, these additional folds resemble
caustics of a system of rays or wave fronts (shown as
dashed lines in the figure), e.g., the right-most edge in
Fig. 5F.

There is an important and useful feature of these
HYSCORE patterns that can aid in the interpretation of
spectra. The positions on the hemisphere which are solu-
tions of Eq. (33) depend neither on the transition number
nor on the electron spin manifold when the tensor axes
are coincident. Along the edges of the octants defined by
the coincident principal axes of the NQI and hfi, all three
transitions of each manifold map to fold singularities. If
a vertical (or horizontal) line is drawn through the
HYSCORE spectrum so that it intersects the ridges for
all three nuclear transitions (as shown in Fig. 7), that
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vertical line intersects the singularity lines of Eq. (33) at fre-
quencies related by

X0;1
mS
¼ X1;2

mS
þ X2;0

mS
. ð42Þ

This general relation is useful for interpreting HYSCORE
ridges and for relating them back to the orientation of
the molecule. The positions of singularities given by the
solutions of Eq. (41) that are not octant edges, do not have
this property because those singularities correspond to dif-
ferent orientations with different sets of frequencies for
each HYSCORE line. The frequencies along the octant
edges can be used to determine elements of Eqs. (38) and
(39).

In the case of weak quadrupole interaction, relation (42)
for the singularities is a good approximation even when the
tensor principal axes do not coincide, thus allowing fairly
accurate estimation of the spin Hamiltonian parameters.

4.2.3. The absence of any symmetry

When the principal axes of NQI and hfi are not collin-
ear, there are no elements of additional symmetry in the
nuclear spin Hamiltonian (7) to aid in solving the right-
hand side of Eq. (20) and numerical methods are required.

The quantities pmS
and qmS

are defined in terms of the
invariants [16] of the Hamiltonian and depend quadratical-
ly on components of the unit vector~kz. The quantity �pmS

is positively defined which, in principle, allows one to diag-
onalize both terms by the same linear transformation [19].
Unfortunately, this transformation is not a simple rotation
of the coordinate system; a rescaling of the spatial axes is
also required. Consequently, the unit sphere is transformed
into a three-axis ellipsoid in a new system of coordinates.
Moreover, the transformations are different for the each
electron spin manifold, limiting the usefulness of these
transformations in solving the equation J = 0 to find the
singularities.

Fortunately, it is not necessary to find the zeroes of Eq.
(40) to locate the singularities in the frequency plane. At
the end of Section 3, we described a method from Catastro-
phe Theory to visualize the singularities simply by project-
ing the parallels and meridians of an arbitrarily oriented
unit hemisphere onto the frequency plane. Fig. 8 shows a



Fig. 6. The distance between additional singularity lines and sides of
curvilinear triangles. (A) Additional singularity from Fig. 5B. The
distances between mapping of the arc near the pole and mappings of the
meridians (/ = 0 and / = p/2) on the frequency plane (Dx) is plotted
versus the distance at the frequency plane between the mappings of the
crossing point of the arc and the meridian / = 0 and that of the point of
the arc (dx). (B) Additional singularity from Fig. 5D. The distance
between the mapping of the edge of the �bubble� and the mapping of the
equator (Dx) is plotted versus the distance between the mappings
of the crossing point of the bubble and equator and the mapping of
point of the bubble (dx).

Fig. 7. Example of the additive relation of Eq. (42) between singularities
from Eq. (33). Three ridges of mS = �1/2 manifold correlate the double
quantum transition (right �column�) and one of the single quantum
transitions (left �column�) of mS = 1/2 electron spin manifold. Parameters
are as follows, xI = 1, j = 2, g = 0.9, AX,X = 6.1, AY,Y = 4.7, and
AZ,Z = �0.3. The type of line dashing is the same for the same folds.
The vertical lines illustrate that points on the same �edge� (marked by the
solid dots) are related by Eq. (42). This relationship can be used to
distinguish Eq. (33) singularities from those of Eq. (41) and to identify
which singularities correspond to the same �edge.�
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set of maps of the parallels and meridians of the unit hemi-
sphere onto the frequency plane illustrating this method.
The folds are easily recognized from the abrupt change in
contrast although the internal cusps are not always appar-
ent when the figures are drawn at low resolution with a lim-
ited number of parallels and meridians.

This method of visualizing the singularities is fast and
efficient because it only requires calculating the eigenvalues
for the mapping of Eq. (17) and does not require the inten-
sity coefficients for Eq. (14) or the Jacobian in Eq. (40) or
its roots. It can be useful for rapidly exploring parameter
space of any spin Hamiltonian to find an initial match
between singularities and the prominent features in an
experimental spectrum before investing in more time-con-
suming simulations.
There are several important characteristics for this case
of no symmetry. One is that none of the singularities nec-
essarily correspond to principal values of the hfi or NQI
tesnors, or even to h or / taking on values of 0 or p/2. Con-
sequently, it can be dangerous to interpret features in the
spectrum as principal values. A second characteristic is that
the singularities for each HYSCORE line with different na

and nb can occur at different orientations on the unit hemi-
sphere. That is, plots like those on the left-hand side of
Fig. 5 can be different for each of the nine �unique�
HYSCORE lines. As a consequence, singularities in two
different lines generally correspond to two different orienta-
tions and the additive relation in Eq. (42) and Fig. 7 will
not hold. A final characteristic is that the internal singular-
ities, for a variety of reasons, can be more intense in a spec-
trum than the fold that outlines the HYSCORE line. As a
consequence, the observed features in a spectrum can not
be considered as an upper or lower bound for that
transition.

5. General features of HYSCORE spectra

Every HYSCORE line in spectra from a collection of
randomly oriented PCs has certain common features. The
most important feature is that the outer edge of each ridge
is a singularity line. This property results from the fact that
the frequencies are analytic functions of the orientation
and are degenerate with respect to inversion of the magnet-
ic field.

This is easily seen in Fig. 8 where the unit hemisphere
maps onto the frequency plane as one continuous closed
surface. Because the surface has no �edges�, the boundaries
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Fig. 8. Fast visualization of the singularity ridges by mapping the parallels and the meridians from the hemisphere onto the frequency plane. Parameter
values for the upper row were as follows: xI = 1, j = 2, g = 0.9, AX,X = 6.1, AY,Y = 4.7, AZ,Z = �0.3, Euler angles (orientation of the NQI tensor system
with respect to the hfi principle axes) were 50�, 40�, and 80�, for the lower row the nuclear Zeeman frequency was a factor of two larger, xI = 2. The ridges
correlating transitions with na = nb = 1 (dq,dq) (the first column); na = 1, nb = 2 (dq,sq) (the second column); and na = 2, nb = 3 (sq, sq) (the third column)
are displayed. The (dq,dq) transitions for both sets of parameters resemble the �glued� hemisphere in Fig. 3D. Each of the three sides has two crossing
folds. Conversely, the (dq,sq) and (sq, sq) lines are bounded by a single fold but have an additional set of internal singularities that appear to be three folds
joined at three cusps.
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of the HYSCORE line must be a fold and hence a singular-
ity. Consequently, the boundaries or �contour lineshape� [5]
is a significant feature of HYSCORE spectra for nuclei
with any spin. When the NQI is significant, there may be
other singularities on the interior of a HYSCORE line
and some care is needed that they are not mistaken for
the boundary of the line.

The singularities in HYSCORE spectra are modified by
experimental conditions in three ways. (1) The singulari-
ties are not infinite in intensity, but become sharp ridges
because of the finite range of the observation times t1

and t2, [5], broadening from electron and nuclear spin
relaxation and from �strain� or a dispersion in the NQI
or hfi parameters. (2) This paper focuses on the singular-
ities caused by mapping. The intensity factors, A and B,
Eq. (14), can become zero and make a portion of the sin-
gularity disappear. Although A and B are functions of s,
Fig. 1B, there can be regions of the unit hemisphere where
A and B vanish for all values of s, making some portion
of the singularity unobservable. Fig. 9 shows the singular-
ities (or Fourier transform �star� artifacts) and the corre-
sponding calculated HYSCORE contour spectra that
take into account the intensity factors. All the major fea-
tures in the calculated spectra corresponds to singularities.
This agreement between spectral features and singularities
justifies our focus on the singularities at the expense of the
intensities which also depend on experimental and data
processing parameters. (3) An experimental measurement
may not include all of the orientations represented by
the unit hemisphere. If the paramagnetic centers in the
sample are even partially ordered, some regions of the
unit hemisphere will not be represented in the measure-
ment and singularities in those un- or under-represented
regions will be absent or reduced. In similar fashion, the
EPR resonance condition may prevent some orientations
of the paramagnetic center from participating in the
HYSCORE measurement, a condition known as �orienta-
tion selection� and is often the result of large g-factor
anisotropy. The probability, P (h,/), that an orientation
contributes to the spectrum enters into the integration
over the unit hemisphere to obtain the HYSCORE spec-
trum in either the time- or frequency-domain. The integral
can be rearranged to incorporate P with the intensity fac-
tors A and B. It then is possible to write Eq. (14) with
A0njrsðh;/Þ ¼ P ðh;/ÞAnjrsðh;/Þ, and similarly for the B

term, replacing the original A and B. The A 0 and B 0 are
still bounded because the normalized P are also bounded.
Thus, we make the same arguments made earlier that the
prominent features in an experimental HYSCORE spec-
trum will coincide with singularities. However, there
may be fewer features because the orientations that give
rise to them are absent from the observation.



Fig. 9. Singularities for all possible crosspeaks and HYSCORE spectra
simulated using the program HYSCORE3 by A.M. Tyryshkin. The upper
figure are the singularities: red denotes the dq,dq singularities; black the
dq, sq and sq,dq; and green the sq, sq. The middle figure is a simulated
spectrum in the limit of small s (=10 ns) and the lower spectrum is
simulated with s = 200 ns. Spectra were simulated in the time domain
from t1 = t2 = 0 and processed without apodization. Parameter values are:
xI = 1, j = 2, g = 0.9, AX,X = 6.1, AY,Y = 4.7, AZ,Z = �0.3, Euler angles
(orientation of the NQI tensor system with respect to the hfi principle
axes) are 50�, 40�, and 80� for g = 2.0023 with S = 1/2, I = 1. The red
ellipses in the middle figure mark internal fold singularities meeting in
cusps for the dq,sq and sq,dq lines. The three figures are plotted to the
same frequency scale.
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The orientational probability, P, is under some experi-
mental control, for example, by changing the resonance
condition when there is orientation selection or by rotating
the samples when there is partial alignment. There may be
some possibility of extracting information about P from a
series of HYSCORE spectra, but our interest is focused
on the ability to use the singularities to make a rapid anal-
ysis of hfi and NQI parameters. Even in the presence of g-
factor anisotropy, it still is feasible to exploit the mapping
singularities with a set of experimental spectra obtained at
several positions in the anisotropic EPR spectrum.

The singularities in the HYSCORE lines change
smoothly as the nuclear Zeeman, hfi, and NQI parameters
vary because the transition frequencies of the nuclear
subhamiltonian involved in the mapping are analytic func-
tions of these parameters. Eight dimensionless parameters
describe the nuclear subhamiltonian, which are too many
to study systematically in a single paper. Only one param-
eter, the nuclear Zeeman interaction, is an experimental
variable, it depends on the EPR measurement frequency
through the EPR resonance condition. Recent progress
in pulsed EPR instrumentation suggest that it may soon
be possible to make HYSCORE measurements for some
nuclei with EPR frequencies in the range of 0.3–
270 GHz. We show, Fig. 10, a few examples of HYSCORE
lineshapes in this frequency range. We use preliminary hfi
and NQI parameters for one of the nitrogens in the Rieske
iron–sulfur cluster with the tensor axes slightly skewed and
we completely ignore orientation selection. This example
does not correspond to any of the special cases discussed
above and most of the calculated lines contain internal
singularities.

There are three types of HYSCORE lines, each with its
own properties. The dq,dq lines (n = j + k = 1 in Eq. (15))
start at low EPR frequencies as narrow lines, roughly par-
allel to the diagonal of the frequency plane. The dq,dq
lines broaden and then narrow as EPR frequency increases,
becoming narrow ridges roughly perpendicular to the diag-
onal in the high frequency limit. At low frequency, the
transition frequencies for the two transitions are nearly
degenerate, producing a line on the diagonal. At high fre-
quencies, the NQI is a slight perturbation on the dq fre-
quencies and the lineshape converges to that for
vanishing NQI.

For the sq, sq line with n = 2 (or 3) for both frequencies,
the lineshape is again a straight line along the diagonal at
low frequency for the same reason as for the dq, dq transi-
tion. The line broadens with increasing frequency, reaching
a limiting shape when xI� hfi determined by both the hfi
and NQI. This high frequency limit may provide good con-
ditions for complete determination of the spin Hamiltoni-
an parameters because the shapes approach the �first-
order� lineshape.

Lines characterized by different values of n (the dq, sq
and some sq, sq lines) are generally broad at all frequencies
because the anisotropy of the two transition frequencies
involved are generally quite different for finite NQI. The
strongest changes of the HYSCORE patterns take place
when the nuclear Zeeman frequency has the value close
to the cancellation condition, xI = 1/2a (K-band for the
parameter set at Fig. 10) [20].

The intensity factors, A and B, vary with the inverse
square (or even higher power) of the EPR frequency at
high frequency, placing a practical limit on high frequency
measurements. However, the high sensitivity and first-or-
der lineshapes may make high-frequency measurements
desirable. For finite NQI, the intensities reach a limiting,
generally non-zero, value for low EPR frequencies because
the eigenfunctions in the two electron spin manifolds
become complex conjugates of each other although the
eigenvalues become degenerate [21].
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Fig. 10. The example of the transformations of the ridges singularities with variation of the external magnetic field strength for ridges of different types.
The types of the ridges are in the column headings. The working frequency of the EPR spectrometer is shown in the leftmost column, the nuclear Zeeman
frequency was calculated for 14N nucleus. The other parameters needed for calculations were as follow, j = 0.8 MHz, g = 0.6, AX,X = 7.2 MHz,
AY,Y = 4.7 MHz, AZ,Z = 4.9 MHz, Euler angles (orientation of the NQI tensor system with respect to the hfi principle axes) were 10�, 15�, and 5�.
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6. Conclusions

The 2D spectra of disordered systems are, from mathe-
matical point of view, smooth mappings of the hemisphere
of possible orientations of the external magnetic field with
respect to the molecular frame of the PC. The spectrum
consists of 36 ridges on the upper half of the frequency
plane. Catastrophe theory explains the positions of the sin-
gularities of such mappings and provides a classification of
them. In our case of smooth mapping of one 2D space onto
the other there can be only two types of singularities: folds
and cusps. The major features in experimental spectra
appear to correspond to these singularities, although not
every singularity is seen in any single experimental
spectrum.

The analysis is based on exact solution of the nuclear
spin Hamiltonian. Systems with negligible quadrupole
interaction have equidistant nuclear eigenvalues for each
electron spin manifold and possess additional elements of
symmetry. The singularities in this case are mappings of
the large arcs connecting the crossing points of the hemi-
sphere with lines directed along the principle axes of the
hyperfine interaction tensor. HYSCORE spectra of such
systems are curvilinear triangles on the frequency plane
and straight line triangles on the x2-plane. The sides of
those triangles in both representations are singularities
of the mapping and the only singularities in this case.
The number of unique ridges in the spectrum is reduced
to 16 because the frequencies of the two single quantum
nuclear transitions are degenerate. When the principle
axes of NQI and hfi tensors coincide, the system has
the same elements of symmetry as in the absence of
NQI and the singularity patterns are curvilinear triangles.
There is no simple general function that describes these
curvilinear segments. The singularities related to the
same transition satisfy relation (42), which may be used
for verifying of the coincidence of the systems of the
principle axes of NQI and hfi tensors. Additional singu-
larities appear for some values of the Hamiltonian
parameters. These may be very close to the sides of tri-
angle thus providing quite large spectral densities. The
singularity patterns appear at times like a projection of
twisted triangles. In all cases, the bounds of the
HYSCORE ridges are singularities of the mapping.
There may also be internal singularity lines inside each
ridge and singularity lines may cross on the frequency
plane.

The singularity patterns are strongly dependent on the
operating frequency of the pulsed EPR spectrometer. The
most significant transformations take place when the nucle-
ar Zeeman frequency becomes approximately equal to the
half of the isotropic hyperfine constant (cancellation
condition).

Analysis of singularity patterns is simpler and needs less
time than calculations of the HYSCORE signal intensities
and provides a promising means for preliminary estima-
tions of the spin Hamiltonian parameters.
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